Подпишись и читай
самые интересные
статьи первым!

Теорема умножения независимых событий. Теоремы сложения и умножения вероятностей

Различают события зависимые и независимые. Два события называются независимыми, если появление одного из них не изменяет вероятность появления другого. Например, если в цехе работают две автоматические линии, по условиям производства не взаимосвязанные, то остановки этих линий являются независимыми событиями.

Несколько событий называются независимыми в совокупности , если любое из них не зависит от любого другого события и от любой комбинации остальных.

События называются зависимыми , если одно из них влияет на вероятность появления другого. Например, две производственные установки связаны единым технологическим циклом. Тогда вероятность выхода из строя одной из них зависит от того, в каком состоянии находится другая. Вероятность одного события B, вычисленная в предположении осуществления другого события A, называется условной вероятностью события Bи обозначается P{A|B}.

Условие независимости события B от события A записывают в виде P{B|A}=P{B}, а условие его зависимости - в виде P{B|A}≠P{B}.

Вероятность события в испытаниях Бернулли. Формула Пуассона.

Повторными независимыми испытаниями, испытаниями Бернулли или схемой Бернулли называются такие испытания, если при каждом испытании имеются только два исхода - появление события А или и вероятность этих событий остается неизменной для всех испытаний. Эта простая схема случайных испытаний имеет большое значение в теории вероятностей.

Наиболее известным примером испытаний Бернулли является опыт с последовательным бросанием правильной (симметричной и однородной) монеты, где событием А является выпадение, например, "герба", ("решки").

Пусть в некотором опыте вероятность события А равна P(А)=р , тогда , где р+q=1. Выполним опыт n раз, предположив, что отдельные испытания независимы, а значит исход любых из них не связан с исходами предыдущих (или последующих) испытаний. Найдем вероятность появления событий А точно k раз, скажем только в первых k испытаниях. Пусть - событие, заключающееся в том, что при n испытаниях событие А появиться точно k раз в первых испытаниях. Событие можно представить в виде

Поскольку опыты мы предположили независимыми, то

41)[стр2] Если ставить вопрос о появлении события А k-раз в n испытаниях в произвольном порядке, то событие представимо в виде

Число различных слагаемых в правой части этого равенства равно числу испытаний из n по k , поэтому вероятность событий , которую будем обозначать , равна

Последовательность событий образует полную группу независимых событий . Действительно, из независимости событий получаем

События А, В называются независимыми , если вероятности каждого из них не зависит от того, произошло или нет другое событие. Вероятности независимых событий называются безусловными .

События А, В называются зависимыми , если вероятность каждого из них зависит от того, произошло или нет другое событие. Вероятность события В, вычисленная в предположении, что другое событие А уже осуществилось, называется условной вероятностью .

Если два события А и В – независимые, то справедливы равенства:

Р(В) = Р(В/А), Р(А) = Р(А/В) или Р(В/А) – Р(В) = 0 (9)

Вероятность произведения двух зависимых событий А, В равна произведению вероятности одного из них на условную вероятность другого:

Р(АВ) = Р(В) ∙ Р(А/В) или Р(АВ) = Р(А) ∙ Р(В/А) (10)

Вероятность события В при условии появления события А:

Вероятность произведения двух независимых событий А, В равна произведению их вероятностей:

Р(АВ) = Р(А) ∙ Р(В) (12)

Если несколько событий попарно независимы, то отсюда еще не следует их независимость в совокупности.

События А 1 , А 2 , …, А n (n>2) называются независимыми в совокупности, если вероятность каждого из них не зависит от того, произошли или нет любые события из числа остальных.

Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению вероятностей этих событий:

Р(А 1 ∙А 2 ∙А 3 ∙…∙А n) = Р(А 1)∙Р(А 2)∙Р(А 3)∙…∙Р(А n). (13)

Конец работы -

Эта тема принадлежит разделу:

Конспект лекций основные понятия теории вероятностей и статистики, используемые в эконометрике

Казанский государственный.. финансово экономический институт.. кафедра статистики и эконометрики..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Дискретная случайная величина
Наиболее полным, исчерпывающим описанием дискретной СВявляется ее закон распределения.Законом распределения случайной величины называется всякое соотношение, устан

Непрерывная случайная величина
Для непрерывной СВ нельзя определить вероятность того, что она примет некоторое конкретное значение (точечную вероятность). Так как в любом интервале содержится бесконечное число значений, то вероя

Взаимосвязь случайных величин
Многие экономические показатели определяются несколькими числами, являясь многомерными СВ. Упорядоченный набор Х=(Х1, Х2, …, Хn) случайных в

Выборочное наблюдение
Генеральной совокупностьюназывается множество всех возможных значений или реализаций исследуемой СВ Х при данном реальном комплексе условий. Выборкой

Вычисление выборочных характеристик
Для любой СВ Х кроме определения ее функции распределения желательно указать числовые характеристики, важнейшими из которых является: - математическое ожидание; - дисперсия

Нормальное распределение
Нормальное распределение (распределение Гаусса) является предельным случаем почти всех реальных распределений вероятности. Поэтому оно используется в очень большом числе реальных приложений теории

Распределение Стьюдента
Пусть СВ U ~ N (0,1), СВ V – независимая от U величина, распределенная по закону χ2 с n степенями свободы. Тогда величина

Распределение Фишера
Пусть V и W – независимые СВ, распределенные по закону χ2 со степенями свободы v1 = m и v2 = n соответственно. Тогда величина

Точечные оценки и их свойства
Пусть оценивается некоторый параметр наблюдаемой СВ

Состоятельность
Оценка называется несмещенной оценкой параметра, если ее математи

Свойства выборочных оценок
На начальном этапе в качестве оценки той или иной числовой характеристики (математического ожидания, дисперсии и т.п.) берется выборочная числовая характеристика. Затем, исследуя эту оценку, ее уто

Доверительный интервал для дисперсии нормальной СВ
Пусть Х ~ N (m, σ2) причем и - неизвестны. Пусть для оценки

Критерии проверки. Критическая область
Проверку статистической гипотезы осуществляют на основании данных выборки.Для этого используют специально подобранную СВ (статистику, критерий), точное или приближенное значение которой известно. Э

Зависимость событий понимается в вероятностном смысле, а не в функциональном. Это значит, что по появлению одного из зависимых событий нельзя однозначно судить о появлении другого. Вероятностная зависимость означает, что появление одного из зависимых событий только изменяет вероятность появления другого. Если вероятность при этом не изменяется, то события считаются независимыми.

Определение : Пусть - произвольное вероятностное пространство, - некоторые случайные события. Говорят, что событие А не зависит от события В , если его условная вероятность совпадает с безусловной вероятностью :

Если , то говорят, что событие А зависит от события В .

Понятие независимости симметрично, то есть, если событие А не зависит от события В ,то и событие В не зависит от события А . Действительно, пусть . Тогда . Поэтому говорят просто, что события А и В независимы.

Из правила умножения вероятностей вытекает следующее симметричное определение независимости событий.

Определение : События А и В, определенные на одном и том же вероятностном пространстве , называются независимыми , если

Если , то события А и В называются зависимыми .

Отметим, что данное определение справедливо и в случае, когда или .

Свойства независимых событий.

1. Если события А и В являются независимыми, то независимыми являются также следующие пары событий: .

▲ Докажем, например, независимость событий . Представим событие А в виде: . Поскольку события являются несовместными, то , а в силу независимости событий А и В получаем, что . Отсюда , что и означает независимость . ■

2. Если событие А не зависит от событий В 1 и В 2 , которые являются несовместными (), то событие А не зависит и от суммы .

▲ Действительно, используя аксиому аддитивности вероятности и независимость события А от событий В 1 и В 2 , имеем:

Связь между понятиями независимости и несовместности.

Пусть А и В - любые события, имеющие ненулевую вероятность: , так что . Если при этом события А и В являются несовместными (), то и поэтому равенство не может иметь место никогда. Таким образом, несовместные события являются зависимыми .

Когда рассматривают более двух событий одновременно, то попарная их независимость недостаточно характеризует связь между событиями всей группы. В этом случае вводится понятие независимости в совокупности.

Определение : События , определенные на одном и том же вероятностном пространстве , называются независимыми в совокупности , если для любого 2 £ m £ n и любой комбинации индексов справедливо равенство:

При m = 2 из независимости в совокупности следует попарная независимость событий. Обратное неверно.


Пример. (Бернштейн С.Н.)

Случайный эксперимент заключается в подбрасывании правильного четырехгранника (тетраэдра). Наблюдается грань, выпавшая книзу. Грани тетраэдра окрашены следующим образом: 1 грань - белая, 2 грань - чёрная,
3 грань - красная, 4 грань - содержит все цвета.

Рассмотрим события:

А = {Выпадение белого цвета}; B = {Выпадение черного цвета};

C = {Выпадение красного цвета}.

Следовательно, события А , В и С являются попарно независимыми.

Однако, .

Поэтому события А , В и С независимыми в совокупности не являются.

На практике, как правило, независимость событий не устанавливают, проверяя ее по определению, а наоборот: считают события независимыми из каких-либо внешних соображений или с учетом обстоятельств случайного эксперимента, и используют независимость для нахождения вероятностей произведения событий.

Теорема (умножения вероятностей для независимых событий).

Если события ,определенные на одном и том же вероятностном пространстве , являются независимыми в совокупности, то вероятность их произведения равна произведению вероятностей:

▲ Доказательство теоремы следует из определения независимости событий в совокупности или из общей теоремы умножения вероятностей с учетом того, что при этом

Пример 1(типовой пример на нахождение условных вероятностей, понятие независимости, теорему сложения вероятностей).

Электрическая схема состоит из трех независимо работающих элементов. Вероятности отказов каждого из элементов соответственно равны .

1) Найти вероятность отказа схемы.

2) Известно, что схема отказала.

Какова вероятность того, что при этом отказал:

а) 1-й элемент; б) 3-й элемент?

Решение. Рассмотрим события = {Отказал k -й элемент}, и событие А = {Отказала схема}. Тогда событие А представляется в виде:

1) Поскольку события и несовместными не являются, то аксиома аддитивности вероятности Р3) неприменима и для нахождения вероятности следует использовать общую теорему сложения вероятностей, в соответствии с которой

Общая постановка задачи: известны вероятности некоторых событий, а вычислить нужно вероятности других событий, которые связаны с данными событиями. В этих задачах возникает необходимость в таких действиях над вероятностями, как сложение и умножение вероятностей.

Например, на охоте проиведены два выстрела. Событие A - попадание в утку с первого выстрела, событие B - попадание со второго выстрела. Тогда сумма событий A и B - попадание с первого или второго выстрела или с двух выстрелов.

Задачи другого типа. Даны несколько событий, например, монета подбрасывается три раза. Требуется найти вероятность того, что или все три раза выпадет герб, или того, что герб выпадет хотя бы один раз. Это задача на умножение вероятностей.

Сложение вероятностей несовместных событий

Сложение вероятностей используется тогда, когда нужно вычислить вероятность объединения или логической суммы случайных событий.

Сумму событий A и B обозначают A + B или A B . Суммой двух событий называется событие, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий. Это означает, что A + B – событие, которое наступает тогда и только тогда, когда при наблюдении произошло событие A или событие B , или одновременно A и B .

Если события A и B взаимно несовместны и их вероятности даны, то вероятность того, что в результате одного испытания произойдёт одно из этих событий, рассчитывают, используя сложение вероятностей.

Теорема сложения вероятностей. Вероятность того, что произойдёт одно из двух взаимно несовместных событий, равна сумме вероятностей этих событий:

Например, на охоте произведены два выстрела. Событие А – попадание в утку с первого выстрела, событие В – попадание со второго выстрела, событие (А + В ) – попадание с первого или второго выстрела или с двух выстрелов. Итак, если два события А и В – несовместные события, то А + В – наступление хотя бы одного из этих событий или двух событий.

Пример 1. В ящике 30 мячиков одинаковых размеров: 10 красных, 5 синих и 15 белых. Вычислить вероятность того, что не глядя будет взят цветной (не белый) мячик.

Решение. Примем, что событие А – «взят красный мячик», а событие В – «взят синий мячик». Тогда событие - «взят цветной (не белый) мячик». Найдём вероятность события А :

и события В :

События А и В – взаимно несовместные, так как если взят один мячик, то нельзя взять мячики разных цветов. Поэтому используем сложение вероятностей:

Теорема сложения вероятностей для нескольких несовместных событий. Если события составляют полное множество событий, то сумма их вероятностей равна 1:

Сумма вероятностей противоположных событий также равна 1:

Противоположные события образуют полное множество событий, а вероятность полного множества событий равна 1.

Вероятности противоположных событий обычно обозначают малыми буквами p и q . В частности,

из чего следуют следующие формулы вероятности противоположных событий:

Пример 2. Цель в тире разделена на 3 зоны. Вероятность того что некий стрелок выстрелит в цель в первой зоне равна 0,15, во второй зоне – 0,23, в третьей зоне – 0,17. Найти вероятность того, что стрелок попадет в цель и вероятность того, что стрелок попадёт мимо цели.

Решение: Найдём вероятность того, что стрелок попадёт в цель:

Найдём вероятность того, что стрелок попадёт мимо цели:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Сложение вероятностей взаимно совместных событий

Два случайных события называются совместными, если наступление одного события не исключает наступления второго события в том же самом наблюдении. Например, при бросании игральной кости событием А считается выпадение числа 4, а событием В – выпадение чётного числа. Поскольку число 4 является чётным числом, эти два события совместимы. В практике встречаются задачи по расчёту вероятностей наступления одного из взаимно совместных событий.

Теорема сложения вероятностей для совместных событий. Вероятность того, что наступит одно из совместных событий, равна сумме вероятностей этих событий, из которой вычтена вероятность общего наступления обоих событий, то есть произведение вероятностей. Формула вероятностей совместных событий имеет следующий вид:

Поскольку события А и В совместимы, событие А + В наступает, если наступает одно из трёх возможных событий: или АВ . Согласно теореме сложения несовместных событий, вычисляем так:

Событие А наступит, если наступит одно из двух несовместных событий: или АВ . Однако вероятность наступления одного события из нескольких несовместных событий равна сумме вероятностей всех этих событий:

Аналогично:

Подставляя выражения (6) и (7) в выражение (5), получаем формулу вероятности для совместных событий:

При использовании формулы (8) следует учитывать, что события А и В могут быть:

  • взаимно независимыми;
  • взаимно зависимыми.

Формула вероятности для взаимно независимых событий:

Формула вероятности для взаимно зависимых событий:

Если события А и В несовместны, то их совпадение является невозможным случаем и, таким образом, P (AB ) = 0. Четвёртая формула вероятности для несовместных событий такова:

Пример 3. На автогонках при заезде на первой автомашине вероятность победить , при заезде на второй автомашине . Найти:

  • вероятность того, что победят обе автомашины;
  • вероятность того, что победит хотя бы одна автомашина;

1) Вероятность того, что победит первая автомашина, не зависит от результата второй автомашины, поэтому события А (победит первая автомашина) и В (победит вторая автомашина) – независимые события. Найдём вероятность того, что победят обе машины:

2) Найдём вероятность того, что победит одна из двух автомашин:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Решить задачу на сложение вероятностей самостоятельно, а затем посмотреть решение

Пример 4. Бросаются две монеты. Событие A - выпадение герба на первой монете. Событие B - выпадение герба на второй монете. Найти вероятность события C = A + B .

Умножение вероятностей

Умножение вероятностей используют, когда следует вычислить вероятность логического произведения событий.

При этом случайные события должны быть независимыми. Два события называются взаимно независимыми, если наступление одного события не влияет на вероятность наступления второго события.

Теорема умножения вероятностей для независимых событий. Вероятность одновременного наступления двух независимых событий А и В равна произведению вероятностей этих событий и вычисляется по формуле:

Пример 5. Монету бросают три раза подряд. Найти вероятность того, что все три раза выпадет герб.

Решение. Вероятность того, что при первом бросании монеты выпадет герб , во второй раз , в третий раз . Найдём вероятность того, что все три раза выпадет герб:

Решить задачи на умножение вероятностей самостоятельно, а затем посмотреть решение

Пример 6. Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча, после игры их кладут обратно. При выборе мячей игранные от неигранных не отличают. Какова вероятность того, что после трёх игр в коробке не останется неигранных мячей?

Пример 7. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что из букв получится слово "конец".

Пример 8. Из полной колоды карт (52 листа) вынимаются сразу четыре карты. Найти вероятность того, что все эти четыре карты будут разных мастей.

Пример 9. Та же задача, что в примере 8, но каждая карта после вынимания возвращается в колоду.

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий - на странице "Различные задачи на сложение и умножение вероятностей" .

Вероятность того, что произойдёт хотя бы одно из взаимно независимых событий , можно вычислить путём вычитания из 1 произведения вероятностей противоположных событий , то есть по формуле.

Р(А)= 1 - 0,3 = 0,7.

3. Теорема сложения вероятностей противоположных событий

Противоположными называют два несовместных события, образующих полную группу. Если одно из двух противоположных событий обозначено через А, то другое принято обозначать . Противоположное событие состоит в непоявлении событияА.

Теорема. Сумма вероятностей противоположных событий равна единице:

Р(А)+Р()= 1.

Пример 4. В ящике имеется 11 деталей, из которых 8 стандартных. Найти вероятность того, что среди 3 наудачу извлеченных деталей есть хотя бы одна бракованная.

Решение. Задачу можно решить двумя способами.

1 способ . События “среди извлеченных деталей есть хотя бы одна бракованная” и “среди извлеченных деталей нет ни одной бракованной” - противоположные. Обозначим первое событие через А, а второе через :

Р(А) =1 - Р() .

Найдем Р(). Общее число способов, которыми можно извлечь 3 детали из 11 деталей, равно числу сочетаний
. Число стандартных деталей равно 8; из этого числа деталей можно
способами извлечь 3 стандартных детали. Поэтому вероятность того, что среди извлеченных 3 деталей нет ни одной нестандартной, равна:

По теореме сложения вероятностей противоположных событий искомая вероятность равна: P(A)=1 - P()=

2 способ. Событие А - "среди извлеченных деталей есть хотя бы одна бракованная" - может реализоваться, как появление:

или события В - "извлечены 1 бракованная и 2 не бракованные детали",

или события С - "извлечены 2 бракованные и 1 не бракованная детали",

или события D - "извлечены 3 бракованные детали".

Тогда A = B + C + D . Так как события B , C и D несовместные, то можно применить теорему сложения вероятностей несовместных событий:

4. Теорема умножения вероятностей независимых событий

Произведением двух событий А и В называют событие C =АВ, состоящее в совместном появлении (совмещении) этих событий.

Произведением нескольких событий называют событие, состоящее в совместном появлении всех этих событий. Например, событие АВС состоит в совмещении событий А, В и С .

Два события называют независимыми , если вероятность одного из них не зависит от появления или непоявления другого.

Теорема. Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий:

Р(АВ)=Р(А) Р(В).

Следствие. Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению вероятностей этих событий:

Р(А 1 А 2 ... А n ) = Р(А 1 ) · Р(А 2 )...Р(А n ).

Пример 5. Найти вероятность совместного появления герба при одном бросании двух монет.

Решение . Обозначим события: А - появление герба на первой монете, В - появление герба на второй монете, С - появление герба на двух монетах С=АВ .

Вероятность появления герба первой монеты:

Р(А) =.

Вероятность появления герба второй монеты:

Р(В) =.

Так как события А и В независимые, то искомая вероятность по теореме умножения равна:

Р(С)=Р(АВ) = Р(А) Р(В) = =.

Пример 6. Имеется 3 ящика, содержащих по 10 деталей. В первом ящике 8, во втором 7 и в третьем 9 стандартных деталей. Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что все три вынутые детали окажутся стандартными.

Решение . Вероятность того, что из первого ящика вынута стандартная деталь (событие А):

Р(А) =

Вероятность того, что из второго ящика вынута стандартная деталь (событие В):

Вероятность того, что из третьего ящика вынута стандартная деталь (событие С ):

Р(С)=

Так как события А, В и С независимые в совокупности, то искомая вероятность (по теореме умножения) paвна:

P(ABC)=P(A) P(B) P(C)= 0,8 0,70,9 = 0,504.

Пример 7. Вероятности появления каждого из двух независимых событий А 1 и А 2 соответственно равны р 1 и р 2. Найти вероятность появления только одного из этих событий.

Решение . Введем обозначения событий:

В 1 появилось только событие А 1 ; В 2 появилось только событие А 2 .

Появление события В 1 равносильно появлению события А 1 2 (появилось первое событие и не появилось второе), т.е. В 1 = А 1 2 .

Появление события В 2 равносильно появлению события 1 А 2 (не появилось первое событие и появилось второе), т.е. В 1 = 1 А 2 .

Таким образом, чтобы найти вероятность появления только одного из событий А 1 или А 2 , достаточно найти вероятность появления одного, безразлично какого из событий В 1 и В 2 . События В 1 и В 2 несовместны, поэтому применима теорема сложения несовместных событий:

Р(В 1 2 ) = Р(В 1 ) + Р(В 2 ) .

Включайся в дискуссию
Читайте также
Водяные бомбочки Bunch o Balloons
Что такое свободный опыт в World of Tanks?
Как в World Of Tanks быстро заработать опыт За что дают чистый опыт в wot